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Binary Hamming Codes

Hamming codes were discovered by R.W. Hamming and M. J. E. Golay. They form an

important class of codes – they have interesting properties and are easy to encode and

decode.

While Hamming codes are defined over all finite fields, here, we only discuss the binary

Hamming codes.

Binary Hamming codes are a family of binary linear error-correcting codes that can detect

up to two-bit errors or correct one-bit errors. For each integer m > 2, there is a

[ 2m − 1, 2m −m− 1, 3 ] Hamming code.

This implies that all Hamming codes have a minimum distance of 3, which means that the

code can detect and correct a single error and detect double-bit errors. By including an

extra parity bit, it is possible to increase the minimum distance of the Hamming code to

4. This gives the code the ability to detect up to 3 errors but not correct any. Because of

the simplicity of Hamming codes, they are popular in computer memory systems (RAM,

Random Access Memory), where they are known as SECDED (”Single Error Correction,

Double Error Detection”). Particularly popular code is the [ 72, 64 ] code, a truncated

[ 127, 120 ] Hamming code plus an additional parity bit.

The parity-check matrix of a Hamming code is constructed by listing all rows of length m,

where each row is a binary representation of a number from 1 to 2m − 1 (not particularly

in ascending or descending order). The parity-check matrix has the property that any

two columns are pairwise linearly independent.

• The dual code of the Hamming code is the punctured Hadamard code.

Although any number of algorithms can be created, the following general algorithm

positions the parity bits at powers of two to ease calculation of which bit was flipped

upon detection of incorrect parity.

I. All bit positions that are powers of two are used as parity bits.

positions: 1, 2, 4, 8, 16, 32, 64, etc.

II. All other bit positions are for the message to be encoded.

positions: 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, etc.

III. Each parity bit calculates the parity for some of the bits in the code word. The

position of the parity bit determines the sequence of bits that it alternately checks and

skips.
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♣ [7,4,3] Hamming Codes. In a 7-bit message, there are seven possible single bit errors, so

three error control bits could potentially specify not only that an error occurred but also

which bit caused the error. In Shannon’s paper, the following algorithm (due to Richard

Hamming) describes a [7, 4, 3] binary Hamming code together with its decoding scheme:

Let v = (v1, v2, v3, v4, v5, v6, v7) ∈ IK7, where v3, v5, v6, v7 are message bits and v1, v2, v4

are parity bits calculated as follows:

1. v1 is chosen to make α = v1 + v3 + v5 + v7 ≡ 0 mod 2.

2. v2 is chosen to make β = v2 + v3 + v6 + v7 ≡ 0 mod 2.

3. v4 is chosen to make γ = v4 + v5 + v6 + v7 ≡ 0 mod 2.

Notice that α and β share v3 and v7, α and γ share v5 and v7, and β and γ share v6 and v7.

When a word is received, then α, β, and γ are calculated; zero indicates no error occurred

and one gives the vi that is incorrect.

Here is a systematic generating matrix of the [7, 4, 3] Hamming code using the above

algorithm:

G =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1

 .
It generates the following Hamming code:

C =

{
0000000 1110000 1001100 0101010 1101001 0111100 1100110 1000011
0011001 1011010 0100101 0010110 1010101 0110011 0001111 1111111

}
Here is how to correct errors for word received by any systematic Hamming code using

the above algorithm, assuming that only one error bit occurred:

(α, β, γ) error ←→ bit
1←→ (1, 0, 0) 1000000←→ 1
2←→ (0, 1, 0) 0100000←→ 2
4←→ (0, 0, 1) 0001000←→ 4
3←→ (1, 1, 0) 0010000←→ 3
5←→ (1, 0, 1) 0000100←→ 5
6←→ (0, 1, 1) 0000010←→ 6
7←→ (1, 1, 1) 0000001←→ 7

Example. In all that follows, we can see how the above decoding scheme detects, corrects,

and decodes words:

Error : Zero Error One Error Two Errors Three Errors Four Errors
Sent : v0 = 0001111 v1 = 0011001 v2 = 1010101 v3 = 0111100 v4 = 1001100

Received : w0 = 0001111 w1 = 0011011 w2 = 0011101 w3 = 1001100 w4 = 1000011
(α β γ) : (0 0 0)←→ 0 (0 1 1)←→ 6 (1 0 1)←→ 5 (0 0 0)←→ 0 (0 0 0)←→ 0
Decoded : v′0 = 0001111 v′1 = 0011001 v′2 = 0011001 v′3 = 1001100 v′4 = 1000011
Detected : Y es Y es Y es No No
Corrected : Y es Y es No No No
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Notice that the received word w2 with two error-bits was decoded as v′2, but v′2 /∈ C, so we

know that v′2 is not the right word and it is impossible for us to guess the right codeword.

An interesting fact about this algorithm is that a received word can be decoded without

the use of a parity check matrix or coset leaders.

Exercise. Use the above decoding scheme to detect and/or correct the following received

words:

Received : w0 = 0111100 w1 = 1001010 w2 = 0100111 w3 = 0010111 w4 = 0001110.

One possibility for a parity-check matrix Hs and a generator matrix Gs for a [7,4,3]

Hamming code is:

Hs =



1 1 1
1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1


and Gs =


1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

 .

Notice that Gs is in standard form. By permuting columns of Gs or rows of Hs, we obtain

systematic Hamming code. We shall see cyclic Hamming codes with non-systematic

generator.

♣ Binary Linear Cyclic Hamming Codes. The [7, 4, 3] binary cyclic code generated by the

polynomial g(x) = 1 + x+ x3 is a Hamming code:

Hc =



1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 1 1
1 0 1


with Gc =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

.

This generator matrix is not in a systematic form and does not use the previous algo-

rithm. The encoding and decoding algorithms for Hamming cyclic codes are based on

multiplication and division of polynomials which is discussed in the binary cyclic code

section.

Notice that

[24 − 1, 24 − 4− 1, 3] = [15, 11, 3] ;

therefore the binary linear cyclic code in IK15, generated by the polynomial g(x) = 1+x+x4

must be a Hamming code.

♣ Using Dual Code to Obtain the Parity-check Matrix of a Hamming code. The fact that

a Hamming code C is also a cyclic code, we may use the transpose of the generator matrix

of C⊥ as the parity-check matrix of the code C.
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Consider the binary [ 7, 4, 3 ] - Hamming code with the generator polynomial g(x) = 1+x+x3

and generator matrix

G =


g(x)
x g(x)
x2 g(x)
x3 g(x)

 =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

.
We have

C =

{
0000000 1101000 0110100 0011010 0001101 1011100 1110010 1100101
0101110 0111001 0010111 1000110 0100011 1001011 1010001 1101000

}
The generator polynomial of C⊥ is h(x) = 1 + x2 + x3 + x4 and its generator matrix is

G⊥ =

 h(x)
xh(x)
x2 h(x)

 =

 1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

.
By transposing the generator matrix of C⊥, we may obtain a parity-check matrix for the

code C. Thus

H =
(
G⊥
)t

=

 1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

t

=



1 0 0
0 1 0
1 0 1
1 1 0
1 1 1
0 1 1
0 0 1


.

If w = 00 1 1 0 0 0↔ w(x) = x2 + x3 is received, then

s0(x) = s(x) ≡ w(x) mod g(x) ≡ x2 + x3 mod (1 + x+ x3) ≡ 1 + x+ x2

is the syndrome polynomial. We next compute

s1(x) ≡ xs(x) mod g(x) ≡ x(1 + x+ x2) mod g(x) ≡ 1 + x2

s2(x) ≡ x2s(x) mod g(x) ≡ x(1 + x2) mod g(x) ≡ 1

which has weight t = 1. So j = 2 and therefore

u(x) = x7−2s2(x) mod (1 + x7) ≡ x5.

Thus

v(x) = w(x) + u(x) = (x2 + x3) + x5 =⇒ 0 0 1 1 0 1 0

is the most likely codeword.

The product of w by H produces the syndrome 0 1 1, which is the sixth row of H ↔ x5.

Hence

v(x) = w(x) + x5 =⇒ v = 00 1 1 0 0 0 + 0 0 0 1 0 0 0 = 0 0 1 1 0 1 0
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is the most likely codeword.

Exercise. Consider the binary [ 7, 4, 3 ] - Hamming code with the generator polynomial

g(x) = 1 + x2 + x3.

Suppose the following words are received:

Received : w0 = 0111100 w1 = 1001010 w2 = 0100111 w3 = 0010111 w4 = 0001110 .

(a) Use the polynomial syndrome to decode the above received words:

(b) Use the generator matrix of C⊥ to decode the above received words:

♣ Extended Hamming Codes. An extension of a binary Hamming code results from

adding at the beginning or at the end of each codeword a new digit that checks the

parity of the codeword. Therefore, every word in an Extended Hamming code has an

even number of ones. This way, the minimum distance of the Hamming code is increased

from 3 to 4. This gives the code the ability to detect and correct a single error and it

could also be used to detect up to 3 errors but not correct any.

It is important to note that by extending a code, we increase the length of the codewords

but we keep the dimension of the code.

By adding a parity bit at the end of our first [7,4,3] Hamming code, we obtain an [8,4,4]

Extended code which changes the generator matrix G into Ĝ:

G =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1

 Ĝ =


1 1 1 0 0 0 0 1
1 0 0 1 1 0 0 1
0 1 0 1 0 1 0 1
1 1 0 1 0 0 1 0


[7,4,3] Hamming Code [8,4,4] Extended Hamming Code

• An [8,4,4] Extended Hamming code is a self-dual RM (1, 3) Reed-Muller code.

The following Extended Hamming code generated by Ĝ still has sixteen codewords:

Ĉ =

{
00000000 11100001 10011001 01010101 11010010 01111000 11001100 10000111
00110011 10110100 01001011 00101101 10101010 01100110 00011110 11111111

}
• Due to the limited redundancy that Hamming codes add to the data, they can only

detect and correct errors when the error rate is low. This is the case in computer memory

(ECC memory), where bit errors are extremely rare and Hamming codes are widely used.

In this context, an extended Hamming code having one extra parity bit is often used.

Extended Hamming codes achieve a Hamming distance of 4, which allows the decoder

to distinguish between when at most one 1-bit error occurs and when any 2-bit errors

occur. In this sense, extended Hamming codes are single-error correcting and double-

error detecting, abbreviated as SECDED.
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