Inequalities Concerning Eigenvalues

In all that follows, we will denote by θ the zero column vector and the identity matrix by I. Let $A = (a_{ij})$ be an $n \times n$ real or complex matrix; the set of eigenvalues of A

$$\sigma(A) = \{\lambda_1, \lambda_2, \ldots, \lambda_n\}.$$

is called the spectrum of A. An eigenvalue with the largest modulus is called a maximal eigenvalue. The spectral radius of A denoted by $\rho(A)$ is the modulus of a maximal eigenvalue. A matrix norm is defined as

$$||A|| = \{\max ||Av||; ||v|| = 1\}.$$

For $i = 1, 2, \ldots, n$, define

$$R_i(A) = \sum_{j=1}^{n} |a_{ij}| \quad \text{and} \quad r_i(A) = R_i(A) - |a_{i,i}|.$$

The row norm of A is defined as follows:

$$||A||_{\infty} = \max_{1 \leq i \leq n} \left\{ \sum_{j=1}^{n} |a_{ij}| \right\} = \max_{1 \leq i \leq n} R_i(A).$$

An orthogonal matrix Q (respectively unitary matrix U) is a matrix satisfying $Q^tQ = I$ (respectively $U^*U = I$).

We need the following two lemmas:

Lemma.

$$\det (A) = \prod_{i=1}^{n} \lambda_i \quad \text{and} \quad \text{trace} (A) = \sum_{i=1}^{n} \lambda_i.$$

Note that similar matrices have the same determinant and trace.

Schur’s lemma. A is unitarily similar to an upper triangular matrix $T = (t_{ij})$, i.e., $T = U^*AU$ for some unitary matrix U.

Now we can present some important inequalities concerning eigenvalues.

Theorem. For any matrix norm $||.||$, we have $\rho(A) < ||A||$.

Proof. Suppose $Au = \lambda u$, where u is a unit vector (i.e., $||u|| = 1$). Then we have

$$|\lambda| = |\lambda||u|| = ||\lambda u|| = ||Au|| \leq \{\max ||Av||; ||v|| = 1\} = ||A||.$$

Thus $\rho(A) \leq ||A||$.

Levy-Deslanque theorem. If the matrix A is strictly diagonally dominant, that is

$$|a_{ii}| > r_i(A) \quad \text{for all } i = 1, 2, \ldots, n.$$

California State University, East Bay
Then A is invertible.

Proof. Suppose $\det(A) = 0$, then for some nonzero vector $u = (u_1, u_2, \ldots, u_n)^t$, $Au = \theta$. Now let k be the index where

$$u_k \geq u_i \quad \text{for all} \quad i = 1, 2, \ldots, n.$$

Then

$$|a_{kk}| \|u_k\| = \left| -\sum_{j \neq k} a_{kj} u_j \right| \leq \sum_{j \neq r} |a_{kj}| |u_j| \leq |u_k| r_i(A).$$

which contradiction with $|a_{kk}| > r_k(A)$. \hfill \blacksquare

A generalization of Levy-Deslanque theorem is presented without a proof.

Ovals of Cassini. If

$$|a_{ii}| |a_{jj}| > r_i(A) r_j(A) \quad (i = 1, 2, \ldots, n \text{ and } i \neq j)$$

then A is invertible.

Gershgorin’s Disks theorem. The eigenvalues of A lie in the union of the disks $D_i(a_{ii}, r_i(A))$, centered at a_{ii} with the radius $r_i(A)$.

Proof. Let λ_k be an eigenvalue of A, then $\det(A - \lambda_k I) = 0$. By the Levy-Deslanque theorem, we conclude that $\lambda_k - a_{ii} < r_i(A)$ for at least one i. \hfill \blacksquare

The fact that $\sigma(A) = \sigma(A^t)$, we can obtain similar results by using columns of A instead of its rows.

Schur’s Inequalities.

$$\sum_{i=1}^n |\lambda_i|^2 \leq \sum_{i,j=1}^n |a_{i,j}|^2.$$

Proof. According to Schur’s lemma, $T = U^* AU$ for some upper triangular matrix $T = (t_{ij})$ and unitary matrix $U = (u_{ij})$. Thus $T^* = U^* A^* U$ and $TT^* = (U^* AU)(U^* A^* U) = U^* AA^* U$. The facts that $\text{trace}(AA^*) = \text{trace}(TT^*)$ and $\text{trace}(AA^*) = \sum_{i,j=1}^n |a_{ij}|^2$ imply that

$$\sum_{i,j=1}^n |a_{ij}|^2 = \text{trace}(AA^*) = \text{trace}(TT^*) = \sum_{i=1}^n |\lambda_i|^2 + \sum_{i,j=1}^n |t_{ij}|^2.$$

Hence the desired conclusion. \hfill \blacksquare