
Differential Equations Massoud Malek

First Order Differential Equations

The k-th order derivative of the function y(x) is denoted by Dk
xy or simply Dky. Thus

Dky = Dk
xy =

dky

dxk
and D0

xy = Iy = y.

A general n-th order, ordinary differential equation is represented by

F (x, y, Dy, · · · , Dny) = 0;

so an ordinary differential equation is an equation (E) which contains terms such as Dky.
The highest power of D in (E) is called the order of the equation.

The equation F (x,D)y = R(x), where

F (x, D) = a0(x)Dn + a1(x)Dn−1 + · · ·+ an(x)I,

is said to be linear of order n. When R(x) = 0, then the linear differential equation is called
homogeneous.

If a solution of F (x, y, D) = 0 can be expressed as y = f(x) (i.e., y is a function of x),
then this solution is called an explicit solution. If we obtain f(x, y) = 0 as a solution of our
differential equation, then we say that only an Implicit solution has been found.

First Order Differential Equations

A first order differential equation may be expressed as follows:

dy

dx
= f(x, y).

The problem {
Solve: dy

dx = f(x, y)
Subject to: y(x0) = y0

(1)

is called an initial-value problem. The first equation gives the slope of the curve y at any
point x, and the second equation specifies one particular value of the function y(x).

Existence. Will every initial-value problem have a solution? No, some assumptions must
be made about f(x, y), and even then we can only expect the solution to exist in a
neighborhood of x = x0. As an example of what could happen, consider

dy

dx
=1 + y2

y(0) =0

The solution curve starts at x = 0 with slope one; that is, y′(0) = 1. Since the slope is
positive, y(x) is increasing near x = 0. Therefore, the expression 1 + y2 is also increasing.
Hence, y′ is increasing. Since y and y′ are both increasing and are related by the equation
y′ = 1 + x2, we can expect that at some finite value of x there will be no solution; that is,
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y(x) = +∞. As a matter of fact, this occurs at x = π/2 because the analytic solution of the
initial-value problem is y(x) = tanx.

Theorem 1. If f(x, y) is continuous in a rectangle R centered at (x0, y0), say

R ={(x, y) : |x− x0| ≤ α, |y − y0| ≤ β} (2)

then the initial-value problem (1) has a solution y(x) for |x − x0| ≤ min (α, β/M), where M is the
maximum of |f(x, y)| in the rectangle R.

Uniqueness. It can happen, even if F (x, y) is continuous, that the initial-value problem
does not have a unique solution. A simple example of this phenomenon is given by the
problem 

dy

dx
=y2/3

y(0) =0

It is obvious that the zero function, y(x) ≡ 0, is a solution of this problem. Another
solution is the function

y(x) =
1
27

x3

To prove that the initial-value problem (1) has a unique solution in a neighborhood
of x = x0, it is necessary to assume somewhat more about f(x, y). Here are the usual
theorems on this.

Theorem 2. If f(x, y) and ∂f(x,y)
∂y are continuous in a rectangle R defined by (2), then the initial-value

problem (1) has a unique solution in the interval |x− x0| ≤ min (α, β/M).

Theorem 3. If f(x, y) is continuous in the strip

a ≤ x ≤ b, −∞ < y < ∞

and satisfies there an inequality

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2|(3)

then the initial-value problem (1) has a unique solution in the interval [a, b].

The Inequality (3) is called a Lipschitz condition in the second variable. We see imme-
diately that this condition is stronger than continuity.

Let f(u) be a function where u ∈ IRn. Then we say that f(u) is homogeneous of degree k,
if f(λu) = λkf(u), for a suitable real λ.

♠ Note. Do not confound homogeneous equations with homogeneous functions.

There are several classes of differential equations of order one. We shall explain how
to classify and solve some of these classes.

♣ Separation of Variables. If M(x, y) = M(x) and N(x, y) = N(y), then (E) may be written
as M(x)dx = −N(y)dy. By integrating both sides of the equality we solve the equation.

Equation: 2xydx− (x2 + 1)dy = 0

Step 1. [2x/(x2 + 1)]dx = dy/y

Step 2.
∫

[2x/(x2 + 1)]dx =
∫

dy/y

Implicit Solution ln(x2 + 1) = ln |y/C|
Explicit Solution y = C(x2 + 1)
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♣ Homgeneous Coefficients. If M(x, y) and N(x, y) are both homogeneous functions of the
same degree. Then by using a substitution we may solve the equation by the method of
separation of variables.

Algorithm. Set y = ux ( or x = vy ) in (E), then dy = xdu + udx ( or dx = ydv + vdy ). We
obtain

M̂(x, u)dx + N̂(x, u)du = 0 or M̂(v, y)dv + N̂(v, y)dy = 0

which can be solved by using separation of variables.

Equation: (x2 + 2y2)dx− xydy = 0

Step 1. M(λx, λy) = λ2M(x, y) N(λx, λy) = λ2N(x, y)

Step 2. y = xu dy = xdu + udx

Step 3. dx/x =
∫

[u/(1 + u2)]du

Implicit Solution Cx4 − x2 = y2

If the point (h, k) is a solution to the linear system{
a1x + b1y + c1 = 0
a2x + b2y + c2 = 0.

Then by setting x = u + h and y = v + k in (E), we obtain the equation

(a1u + bv)du + (a2u + b2v)dv = 0

which has homogeneous coefficients of degree one.
If (a1x + b1y + c1) = s(a2x + b2y + c2) + r, then by substituting u for (a1x + b1y + c1) and

eliminating x or y, we may solve the equation by separation of variables.

♣ Eact Equation. The equation (E) is said to be exact, if My(x, y) = Nx(x, y). Since
Fxy(x, y) = Fyx(x, y) for any smooth function F (x, y), we conclude that there exists a con-
stant function C = F (x, y) such that Fx(x, y) = M(x, y) and Fy(x, y) = N(x, y) with

0 = d C = d F (x, y) = M(x, y)dx + N(x, y)dy.

Algorithm. Let

C = F (x, y) =
∫

M(x, y)dx + T (y) (1)

C = F (x, y) =
∫

N(x, y)dy + S(x). (2)

We select (1) or (2), whichever is simpler and easier to integrate.
By setting ∂F (x, y)/∂y = N(x, y) ( or ∂F (x, y)/∂x = M(x, y) ) we obtain T ′(y) or S′(x).

To find T (y) or S(x) we just integrate T ′(y) or S′(x). The solution of (E) is then obtained
from (1) or (2).
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Equation: (x + 2y)dx + (2x + y)dy = 0

Step 1. My(x, y) = Nx(x, y) = 2

Step 2. C = F =
∫

(x + 2y)dx + T (y) F = (x2

2 ) + 2xy + T (y)

Step 3. 2x + T ′(y) = (2x + y) T (y) = y2/2

Implicit Solution C = x2

2 + 2xy + y2

♦ Example 1. If

My(x, y)−Nx(x, y)
N(x, y)

or − [My(x, y)−Nx(x, y)]
M(x, y)

is a function of x (or y). Then the integrating factor is

u(x) = exp

(∫
My(x, y)−Nx(x, y)

N
dx

)
or v(y) = exp

(
−

∫
My(x, y)−Nx(x, y)

N
dy

)
.

♦ Example 2. If M(x, y) and N(x, y) are both homogeneous functions of the same degree
and xM(x, y) + yN(x, y) 6= 0, then

u(x, y) =
1

xM(x, y) + yN(x, y)

is an integrating factor for the equation.

♣ Linear Equation. The first order linear differential equation

dy

dx
+ P (x)y = Q(x)

can be solved by defining first the function

v(x) = exp
(∫

p(x)dx

)
and then finding

R(x) =
∫

v(x)Q(x)dx .

The solution to the equation is xy = R(X).

♥ Bernouilli’s Equation. The following equation:

dy

dx
+ P (x)y = Q(x)yn (n 6= 1)

is called a Bernouilli’s equation. By setting z = y−n+1 in the equation, we obtain the
linear equation

dz

dx
+ (1− n)P (x)z = (1− n)Q(x).
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Equation: dy
dx + 1

xy = xy2

Step 1. z = y−2+1

Step 2. dz
dx −

1
xz = −x

Step 3. v(x) = e−
∫

dx/xdx = x−1

Step 4. zx−1 =
∫
−x(x−1)dx = −

∫
dx y−1x−1 = −x− C

Explicit Solution y = −1
x2+Cx

♥ Ricatti’s Equation. The nonlinear equation

dy

dx
= P (x) + Q(x)y + R(x)y2

which frequently occurs in physical applications is called Ricatti’s equation. Its solution
cannot be expressed in terms of elementary function. However when R(x) = −1, we can
change the equation into a second order linear differential equation by setting y = z′/z.

♥ Clairaut’s Equation. The nonlinear equation

y = xy′ + f(y′)

is called Clairaut’s equation. By differentiating both sides of the equality with respect
to x, we obtain the second order equation

[x + f ′(y′)] y′′ = 0.

One set of solutions called general solution, is y = cx + f(c) and is obtained from y′′ = 0.
If x + f ′(y′) = 0, then we obtain the parametrized curve

x = −f ′(t), y = f(t)− tf ′(t).

This curve is also a solution, called the singular solution,

♣ Solving by Inspection. The following identities may help you solve some differential
equations.

ydx + xdy = d(xy) ydx−xdy
y2 = d

(
x
y

)
= −d

(
y
x

)
mxm−1yndx + nxmyn−1dy = d(xmyn) mxm−1yndx−nxmyn−1dy

y2n = d
(

xm

yn

)
ydx+xdy

xy = d(ln(xy)) ydx−xdy
xy = d

[
ln

(
x
y

)]
= −d

[
ln

(
y
x

)]
ydx+xdy
1+x2y2 = d [arctan(xy)] ydx−xdy

x2+y2 = d
[
arctan

(
x
y

)]
= −d

[
arctan

(
y
x

)]
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♣ Picard’s Successive Approximations. Consider the initial-value problem

y′ = f(x, y), y(x0) = y0.

If we integrate both sides of the differential equation form x0 to x with respect to x, we
obtain the new equation

y(x) = y0 +
∫ x

x0

f(t, y(t))dt. (E1)

Since y(x0) = y0, the new equation (E1) is an alternative way of writing the initial-value
problem. Furthermore, if we differentiate both sides of (E1), we obtain the differential
equation

y′(x) = f(x, y(x)).

We now define a sequence of functions {yn(x)}, called Picard’s iterations, by successive
formulas:

Picard’s method:

y′ = f(x, y), y(x0) = y0

y0(x) = y0

y1(x) = y0 +
∫ x

x0
f
[
t, y0(t)

]
dt,

y2(x) = y0 +
∫ x

x0
f
[
t, y1(t)

]
dt,

...
...

yn(x) = y0 +
∫ x

x0
f
[
t, yn−1(t)

]
dt,

Equation:

y0 = y(x), y(0) = 1
y0(x) = y0 = 1
y1(x) = 1 +

∫ x

x0
(1)dt = 1 + x

y2(x) = 1 +
∫ x

x0
(1 + t)dt = 1 + x + x2

2 ,

...
...

yn(x) = 1 + x + x2

2! + · · ·+ xn

n!
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