Differential Equations Massoud Malek

First Order Differential Equations

The k-th order derivative of the function y(z) is denoted by DEy or simply D*y. Thus
d*y
DFy = D};y =—— and D% =1Iy=y.
dxk
A general n-th order, ordinary differential equation is represented by

F(CU»%DZJ»aDny) :07

so an ordinary differential equation is an equation (E) which contains terms such as DFy.
The highest power of D in (E) is called the order of the equation.

The equation F(x, D)y = R(x), where
F(z,D) = ag(z)D" + a1 () D" + -+ 4 ap ()1,

is said to be linear of order n. When R(z) = 0, then the linear differential equation is called
homogeneous.

If a solution of F(z,y, D) = 0 can be expressed as y = f(z) (i.e., y is a function of z),
then this solution is called an explicit solution. If we obtain f(z,y) = 0 as a solution of our
differential equation, then we say that only an Implicit solution has been found.

First Order Differential Equations

A first order differential equation may be expressed as follows:

dy _
The problem
{ Solve: W = f(x,y) (1)
Subject to:  y(xo) = o

is called an initial-value problem. The first equation gives the slope of the curve y at any
point z, and the second equation specifies one particular value of the function y(x).

Existence. Will every initial-value problem have a solution? No, some assumptions must
be made about f(z,y), and even then we can only expect the solution to exist in a
neighborhood of x = z5. As an example of what could happen, consider

dy 2

27 1

{ dxr ty
y(0) =0

The solution curve starts at = = 0 with slope one; that is, 3/(0) = 1. Since the slope is
positive, y(x) is increasing near z = 0. Therefore, the expression 1+ 42 is also increasing.
Hence, ¢ is increasing. Since y and 3’ are both increasing and are related by the equation
y' =1+ 22, we can expect that at some finite value of z there will be no solution; that is,
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y(r) = +o00. As a matter of fact, this occurs at x = 7/2 because the analytic solution of the
initial-value problem is y(z) = tanz.

Theorem 1. If f(x,y) is continuous in a rectangle R centered at (zo,yo), say

R={(z,y): |z —x0| <, |y—1uo| <pB} (2)

then the initial-value problem (1) has a solution y(z) for |z — x| < min(a,3/M), where M is the
maximum of | f(z,y)| in the rectangle R.

Uniqueness. [t can happen, even if F(z,y) is continuous, that the initial-value problem
does not have a unique solution. A simple example of this phenomenon is given by the
problem

dy _.2/3
dx =Y
y(0) =0

It is obvious that the zero function, y(z) = 0, is a solution of this problem. Another
solution is the function

1 3
T

To prove that the initial-value problem (1) has a wunique solution in a neighborhood
of © = z¢, it is necessary to assume somewhat more about f(z,y). Here are the usual
theorems on this.

y(z)

Theorem 2. If f(x,y) and %ﬁ;’y) are continuous in a rectangle R defined by (2), then the initial-value
problem (1) has a unique solution in the interval |z — x| < min («, 3/M).

Theorem 3. If f(x,y) is continuous in the strip
a<zx<b -—-o0<y<oo
and satisfies there an inequality

[f(z,y1) — fz,92)] < Ly1 — 2/(3)

then the initial-value problem (1) has a unique solution in the interval [a, b].

The Inequality (3) is called a Lipschitz condition in the second variable. We see imme-
diately that this condition is stronger than continuity.

Let f(u) be a function where u € IR®. Then we say that f(u) is homogeneous of degree k,
if f(Au) = A\¥f(u), for a suitable real \.

& Note. Do not confound homogeneous equations with homogeneous functions.
There are several classes of differential equations of order one. We shall explain how
to classify and solve some of these classes.

& Separation of Variables. If M(z,y) = M(z) and N(z,y) = N(y), then (E) may be written
as M(z)dx = —N(y)dy. By integrating both sides of the equality we solve the equation.

Equation: 2zydr — (2% + 1)dy = 0
Step 1. [2z/(z? + 1)]dz = dy/y
Step 2. [12z/(2* +1)]dz = [dy/y
Implicit Solution In(z? +1) = In|y/C]
Explicit Solution y=C(z?+1)
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& Homgeneous Coefficients. If M(z,y) and N(z,y) are both homogeneous functions of the

same degree. Then by using a substitution we may solve the equation by the method of
separation of variables.

Algorithm. Set y = uz (or z = vy ) in (E), then dy = xdu + udz ( or dz = ydv + vdy ). We
obtain

]\//_T(x,u)dx + N(z,u)du = 0 or J\/Z(uy)dv + N(v,y)dy =0

which can be solved by using separation of variables.

Equation: (22 + 2y*)dz — zydy = 0

Step 1. Mz, \y) = N2M(z,y) Nz, \y) = A\2N(z,y)
Step 2. y=axu dy = xdu—+ udx

Step 3. de/z = [[u/(1+u?)]du

Implicit Solution Czt — 22 =2

If the point (h,k) is a solution to the linear system

a1x+b1y+c1 =0
asx + bay + co = 0.

Then by setting  =u+h and y =v+k in (E), we obtain the equation
(a1u =+ by)du + (agu + bev)dv = 0
which has homogeneous coefficients of degree one.
If (a12 + by + c1) = s(azx + by + ¢2) + 7, then by substituting « for (a12 + b1y + ¢;) and
eliminating z or y, we may solve the equation by separation of variables.
& Eact Equation. The equation (E) is said to be exact, if M,(z,y) = N.(z,y). Since

Foy(z,y) = Fy(z,y) for any smooth function F(z,y), we conclude that there exists a con-
stant function C = F(x,y) such that F,(z,y) = M(x,y) and F,(z,y) = N(z,y) with

0=dC =dF(z,y) = M(z,y)dx + N(z,y)dy.
Algorithm. Let

C=ﬂmw=/mew+ﬂw (1)

€= Fla.y) = [ Ny + 5(a). 2)

We select (1) or (2), whichever is simpler and easier to integrate.

By setting 0F(z,y)/dy = N(z,y) ( or F(z,y)/0z = M(z,y) ) we obtain T’(y) or S'(z).
To find T(y) or S(x) we just integrate T"(y) or S’(x). The solution of (E) is then obtained
from (1) or (2).
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Equation: (x+2y)de+ 2z +y)dy =0

Step 1. My(z,y) = Ny(z,y) =2

Step 2. C=F=[(z+2y)dz+T(y) F:(%)+2xy+T()
Step 3. 20+ T'(y) = 2z +y) T(y) =y?/2

Implicit Solution C= %2 + 2xy + 3>

{$ Example 1. If

or —

is a function of 2 (or y). Then the integrating factor is

¢ Example 2. If M(x,y) and N(x,y) are both homogeneous functions of the same degree
and M (z,y) + yN(x,y) # 0, then

1
rM(z,y) +yN(z,y)

u(z,y) =

is an integrating factor for the equation.

& Linear Equation. The first order linear differential equation

dy

Lt Py = QM)

can be solved by defining first the function

o(z) = exp ( / p(m)dx)

and then finding

The solution to the equation is xy = R(X).

QO Bernouilli’s Equation. The following equation:

dy

L4 P@y=Q@y" (1)

is called a Bernouilli’s equation. By setting z = y="*! in the equation, we obtain the
linear equation
dz

T (L= n)P(x)z = (1-n)Q(x).
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Equation: gg + 1y =ay?

Step 1. z =y 2t

Step 2. g% — %z S

Step 3. v(z)=e J dafedz -1

Step 4. ze =[x VNde=— [de ylat=—2-C
Explicit Solution Y= mres

QO Ricatti’s Equation. The nonlinear equation

dy

7 = P@) + Qz)y + R(z)y?

which frequently occurs in physical applications is called Ricatti’s equation. Its solution
cannot be expressed in terms of elementary function. However when R(z) = —1, we can
change the equation into a second order linear differential equation by setting y = 2'/=.

QO Clairaut’s Equation. The nonlinear equation

y=uzy + f(y)

is called Clairaut’s equation. By differentiating both sides of the equality with respect
to z, we obtain the second order equation

[z+ f'(y)]y" =0.

One set of solutions called general solution, is y = cz + f(c) and is obtained from y” = 0.
If z + f'(v') = 0, then we obtain the parametrized curve

z=—f'(t), y=ft)-tf'1).

This curve is also a solution, called the singular solution,

& Solving by Inspection.

The following identities may help you solve some differential
equations.

ydx + xdy = d(zy)

ydrx—xdy
pl

= d(2) = —d(¥)

mz™ Yytdr + na™y" " tdy = d(z™y™)

mz™  tytde—naz™y"  tdy

i[5

y2n
yatedy — g(In(wy)) et = d[In (1)) = —d [In (2)]
uletrey — dfarctan(zy)] Uiyt = d[arctan (§)] = —d [arctan (¥)]

California State University, East Bay



Massoud Malek First Order Differential Equations Page 6

& Picard’s Successive Approximations. Consider the initial-value problem

y/ = f(x,y), y($0) = Yo-

If we integrate both sides of the differential equation form z, to x with respect to z, we
obtain the new equation

)=+ [ Sy (B

Since y(zo) = yo, the new equation (E;) is an alternative way of writing the initial-value
problem. Furthermore, if we differentiate both sides of (E;), we obtain the differential
equation

y'(x) = fz,y(@)).

We now define a sequence of functions {y,(z)}, called Picard’s iterations, by successive
formulas:

Picard’s method: Equation:

y = f(z,y), y(wo) = Yo Yo = y(x), y(0) =1

@) =y yo(@) =yo =1

yi(x) = yo + [, ft:yo(t)]dt, yi(e) =1+ [, (Ddt =1+z

ya(x) = o + [, ft,y1(t)]dt, ya(x) =1+ [C(A+Ddt =1+a+ 5,
yn(@) = yo + [ Ftyn—1(t)]dt, yn(2) =142+ L 4o 4 20
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