
Differential Equations Massoud Malek

Numerical Solution of Ordinary Differential Equations

A first order differential equation may be expressed as follows:

dy

dx
= f(x, y).

The problem {
Solve: dy

dx = f(x, y)
Subject to: y(x0) = y0

(1)

is called an initial-value problem. The first equation gives the slope of the curve y at any
point x, and the second equation specifies one particular value of the function y(x).

Existence. Will every initial-value problem have a solution? No, some assumptions must
be made about f(x, y), and even then we can only expect the solution to exist in a
neighborhood of x = x0. As an example of what could happen, consider

dy

dx
=1 + y2

y(0) =0

The solution curve starts at x = 0 with slope one; that is, y′(0) = 1. Since the slope is
positive, y(x) is increasing near x = 0. Therefore, the expression 1 + y2 is also increasing.
Hence, y′ is increasing. Since y and y′ are both increasing and are related by the equation
y′ = 1 + x2, we can expect that at some finite value of x there will be no solution; that is,
y(x) = +∞. As a matter of fact, this occurs at x = π/2 because the analytic solution of the
initial-value problem is y(x) = tanx.

Theorem 1. If f(x, y) is continuous in a rectangle R centered at (x0, y0), say

R ={(x, y) : |x− x0| ≤ α, |y − y0| ≤ β} (2)

then the initial-value problem (1) has a solution y(x) for |x − x0| ≤ min (α, β/M), where M is the
maximum of |f(x, y)| in the rectangle R.

Uniqueness. It can happen, even if F (x, y) is continuous, that the initial-value problem
does not have a unique solution. A simple example of this phenomenon is given by the
problem 

dy

dx
=y2/3

y(0) =0

It is obvious that the zero function, y(x) ≡ 0, is a solution of this problem. Another
solution is the function

y(x) =
1
27

x3

To prove that the initial-value problem (1) has a unique solution in a neighborhood
of x = x0, it is necessary to assume somewhat more about f(x, y). Here are the usual
theorems on this.
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Theorem 2. If f(x, y) and ∂f(x,y)
∂x are continuous in a rectangle R defined by (2), then the initial-value

problem (1) has a unique solution in the interval |x− x0| ≤ min (α, β/M).

Theorem 3. If f(x, y) is continuous in the strip

a ≤ x ≤ b, −∞ < y < ∞

and satisfies there an inequality

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2| (3)

then the initial-value problem (1) has a unique solution in the interval [a, b].

The Inequality (3) is called a Lipschitz condition in the second variable. We see imme-
diately that this condition is stronger than continuity.

In the numerical solution of differential equations, we rarely expect to obtain the
solution directly as a formula giving y(x) as a function of x. Instead, we usually construct
a table of function values of the form

x0 x1 x2 x3 · · · xm

y0 y1 y2 y3 · · · ym
(4)

Here, yi is the computed approximation value of y(xi), our notation for the exact solution
at xi. From a table such as (4), a spline function or other approximating function can be
constructed. However, most numerical methods for solving ordinary differential equations
produce such a table first.

♣ Taylor-Series Method. For the Taylor-series method, it is necessary to assume that
various partial derivatives of f(x, y) exist. To illustrate the method we take a concrete
example: {

y′ = cos x− sin y + x2

y(−1) = 3
(5)

At the heart of the procedure is the Taylor series for y, which we write as

y(x + h) =x(h) + hy′(x) +
h2

2!
y′′(x) +

h3

3!
y′′′(x) +

h4

4!
y(4)(x) + · · · (6)

The derivative appearing here can be obtained from the differential equation (5). They
are

y′′ =− sinx− y′ cos y + 2x

y′′′ =− cos x− y′′ cos y + (y′)2 sin y + 2
y(4) =sinx− y′′′ cos y + 3y′y′′ sin y + (y′)3 cos y

At this point, our patience wears thin and we decide to use only terms up to and including
h4 in the Formula (6). The term that we have not included start with a term in h5, and
they constitute collectively the truncation error inherent in our procedure. The resulting
numerical method is said to be of order 4.

Here is an algorithm for this method and the problem (5).
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Algorithm for Taylor-Series Method

INPUT : The initial x0 = −1; the initial y0 = 3; the step size h; integer n.

FOR k = 1, 2, . . . , n DO
y′ := f(x, y) = cos x− sin y + x2

y′′ := df(x, y) = − sinx− y′ cos y + 2x

y′′′ := d2f(x, y) = − cos x− y′′ cos y + (y′)2 sin y + 2
y(4) := d3f(x, y) = sin x− y′′′ cos y + 3y′y′′ sin y + (y′)3 cos y

y := y + h(y′ +
h

2
(y′′ +

h

3
(y′′′ +

h

4
y(4))))

x := x + h

OUTPUT: k, x, y

END

♣ Euler’s Method. The Taylor-series method with n = 1 is called Euler’s method. It looks
like this:

y(x + h) = y(x) + hf(x, y)

This formula has the obvious advantage of not requiring any differentiation of f(x, y).
This advantage is offset by the necessity of taking small values for h to gain accept-
able precision. Still, the method serves as a useful example and is of great importance
theoretically since existence theorems can be based on it.

Example. Apply the Euler’s method to the initial-value problem{
y′ = 2x + y

y(0) = 1,
(7)

where h = 0.2 and n = 5

Solution.

x1 =x0 + h = 0.2, f(x0, y0) = f(0, 1) = 1.000, (n = 1)
y1 =y0 + hf(x0, y0) = 1.000 + 0.2(1.000) = 1.200
x2 =x1 + h = 0.4, f(x1, y1) = f(0.2, 1.200) = 1.600, (n = 2)
y2 =y1 + hf(x1, y1) = 1.200 + 0.2(1.600) = 1.520
x3 =x2 + h = 0.6, f(x2, y2) = f(0.4, 1.520) = 2.320, (n = 3)
y3 =y2 + hf(x2, y2) = 1.520 + 0.2(2.320) = 1.984
x4 =x3 + h = 0.8, f(x3, y3) = f(0.6, 1.984) = 3.184, (n = 4)
y4 =y3 + hf(x3, y3) = 1.984 + 0.2(3.184) = 2.621
x5 =x4 + h = 1.0, f(x4, y4) = f(0.8, 2.621) = 4.221, (n = 5)
y5 =y4 + hf(x4, y4) = 2.621 + 0.2(4.221) = 3.465.

♣ Runge-Kutta Methods. The Taylor-series method has the drawback of requiring some
analysis prior to programming it. We shall have to determine formulae for y′′, y′′′, and y(4)

by successive differentiation in (1). Then these functions will have to be programmed.
The Runge-Kutta methods avoid this difficulty although they do imitate the Taylor-

series method by means of clever combinations of values of f(x, y).

♥ Second Order Runge-Kutta Method. Let us begin with the Taylor series for f(x, y):

y(x + h) =y(x) + hy′(x) +
h2

2!
y′′(x) +

h3

3!
y′′(x) +

h4

4!
y(4)(x) + · · · (8)
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From the differential equation, we have

y′(x) = f

y′′(x) = fx + fyy′ = fx + fyf

y′′′(x) = fxx + fxyf + [fx + fyf ]fy + f [fxy + fyyf ]
etc

The first three terms in Equation (8) can be written now in the form

y(x + h) =y(x) + hf(x, y) +
1
2
h2[fx(x, y) + f(x, y)fy(x, y)] + O(h3)

=y(x) +
1
2!

hf(x, y) +
1
2
h[f(x, y) + hfx(x, y) + hf(x, y)fy(x, y)] + O(h3) (9)

In order to eliminate the partial derivatives in Equation (9), we use the Taylor series in
two variables for

f(x + h, y + hf(x, y)) = f(x, y) + hfx(x, y) + hf(x, y)fy(x, y) + O(h2)

Thus Equation (9) becomes

y(x + h) = y(x) +
1
2
hf(x, y) +

1
2
hf(x + h, y + hf(x, y)) + O(h3)

Hence, the formula for advancing the solution is

y(x + h) = y(x) +
h

2
f(x, y) +

h

2
f(x + h, y + hf(x, y))

or equivalently

y(x + h) =y(x) +
1
2
(F1 + F2) (10)

where {
F1 =hf(x, y)
F2 =hf(x + h, y + F1)

This formula can be used repeatedly to advance the solution one step at a time. It is
called a Second-Order Runge-Kutta Method. It is also known as Heun’s Method.

♥ Fourth Order Runge-Kutta Method. The higher-order Runge-Kutta formulae are very
tedious to derive, and we shall not do so. The formulae are rather elegant, however, and
are easily programmed once the have been derived. Here are the formulae for the classical
Fourth-Order Runge-Kutta Method:

y(x + h) =y(x) +
1
6
(F1 + 2F2 + 2F3 + F4) (10)

where 

F1 =hf(x, y)

F2 =hf(x +
1
2
h, y +

1
2
F1)

F3 =hf(x +
1
2
h, y +

1
2
F2)

F4 =hf(x + h, y + F3)
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This is called a fourth-order method because it reproduces the terms in Taylor series up
to and including the one involving h4. The error is therefore O(h5).

Algorithm for Fourth-Order Runge-Kutta Method

INPUT : The function f(x, y); The initial x0; the initial y0; the step size h; integer n.

FOR k = 1, 2, . . . , n DO
F1 := hf(x, y)

F2 := hf(x +
1
2
h, y +

1
2
F1)

F3 := hf(x +
1
2
h, y +

1
2
F2)

F4 := hf(x + h, y + F3)

y := y +
1
6
[F1 + 2F2 + 2F3 + F4]

x := x + h

OUTPUT: k, x, y

END

Example. Apply the fourth-order Runge-Kutta method to the initial-value problem{
y′ = 2x + y

y(0) = 1,
(7)

where h = 0.2 and n = 2
Solution.

F1 = hf(x0, y0) = 0.2f(0, 1) = 0.2(1) = 0.2, (n = 1)

x0 +
h

2
= 0 +

1
2
(0.2) = 0.1 and y0 +

1
2
F1 = 1 +

1
2
(0.2) = 1.1,

F2 = hf(x0 +
h

2
, y0 +

F1

2
) = 0.2f(0.1, 1.1) = 0.2(1.3) = 0.26

y0 +
1
2
F2 = 1 +

1
2
(0.26) = 1.13,

F3 = hf(x0 +
h

2
, y0 +

F2

2
) = 0.2f(0.1, 1.13) = 0.2(1.33) = 0.266

x0 + h = 0 + 0.2 = 0.2 and y0 +
1
2
F3 = 1 + 0.266 = 1.266,

F4 = hf(x0 + h, y0 + F3) = 0.2f(0.2, 1.266) = 0.2(1.666) = 0.3332

y1 = 1 +
1
6
[F1 + 2F2 + 2F3 + F4] = 1 +

1
6
(0.2 + 0.52 + 0.532 + 0.332) = 1.2642

F1 = hf(x1, y1) = 0.2f(0.2, 1.2642) = 0.2(1.6642) = 0.33284, (n = 2)

x1 +
h

2
= 0.2 +

1
2
(0.2) = 0.3 and y1 +

1
2
F1 = 1.2642 +

1
2
(0.33284) = 1.43062,

F2 = hf(x1 +
h

2
, y1 +

F1

2
) = 0.2f(0.3, 1.43062) = 0.2(2.03062) = 0.40612

y1 +
1
2
F2 = 1.2642 +

1
2
(0.40612) = 1.46726,

F3 = hf(x1 +
h

2
, y1 +

F2

2
) = 0.2f(0.3, 1.43062) = 0.2(2.06726) = 0.41345

x1 + h = 0.2 + 0.2 = 0.4 and y1 +
1
2
F3 = 1.2642 + 0.41345 = 1.67765,

F4 = hf(x1 + h, y1 + F3) = 0.2f(0.4, 1.67765) = 0.2(2.47765) = 0.49553

y2 = 1.2642 +
1
6
[F1 + 2F2 + 2F3 + F4] = 1.2642 +

1
6
(0.33284 + 0.81224 + 0.8269 + 0.49553 = 1.6754
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