Root-Finding Methods

Bisection Method. The bisection method is a root-finding tool based on the Intermediate Value Theorem. The method is also called the binary search method.

CALCULUS. Suppose the function $F(x)$ is continuous on $[a_0, b_0]$ and $F(a_0)F(b_0) \leq 0$. Then there exists an $x^* \in [a_0, b_0]$ such that $F(x^*) = 0$.

Algorithm A

1. Define $0^* > 0$ as your zero, N as the maximum number of iterations and set $T := a_0$;
2. set $x_0 := b_0$ and $n := 1$;
3. find $x_n = \frac{T + x_{n-1}}{2}$;
4. if $|F(x_n)| = 0^*$ or $n > N$, then $x^* := x_n$ and STOP;
5. if $S := F(x_n)F(x_{n-1}) < 0$, then set $n := n + 1$, $T := x_{n-1}$ and GOTO STEP3;
6. if $S := F(x_n)F(x_{n-1}) > 0$, then set $n := n + 1$ and GOTO STEP3.

We have:

$$x^* = \lim_{n \to \infty} x_n$$

$$|x_n - x^*| \leq \frac{b_0 - a_0}{2^n} = 2^{-n}(b_0 - a_0).$$

If $\epsilon = 10^{-r}$, then in order to accept x_N as x^* we need to choose an integer N which satisfies the condition $\log 2^{-N}(b_0 - a_0) \leq \log 10^{-r}$. This implies that

$$N \geq \frac{r + \log(b_0 - a_0)}{\log 2}.$$

Algorithm B

1. Define $0^* > 0$ as your zero, N as the maximum number of iterations and set n to zero;
2. set $x := \frac{a_0 + b_0}{2}$;
3. if $|F(x)| = 0^*$ or $n > N$, then $x^* := x$ and STOP;
4. if $S := F(a_n)F(b_n) < 0$, set $a_{n+1} := a_n$, $b_{n+1} := x$ and GOTO STEP3;
5. if $S := F(a_n)F(b_n) > 0$, set $a_{n+1} := x$, $b_{n+1} := b_n$ and GOTO STEP3.

We have:

$$x^* = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

$$N \geq r + \log(b_0 - a_0).$$

Advantage. Easy implementation, guaranteed convergence.

Disadvantage. It requires a_0 and b_0 to satisfy $F(a_0)F(b_0) < 0$. Also very slow convergence. You can’t in general expect to hit the solution exactly; you can only see if one of the Stopping Criteria such as

$$|F(x)| < \epsilon, \quad |x_n - x_{n-1}| < \epsilon \quad \text{or} \quad N \geq \frac{r + \log(b_0 - a_0)}{\log 2}.$$

are satisfied.

California State University, East Bay
Newton-Raphson Method. The Newton-Raphson (or simply Newton’s) method is one of the most powerful numerical methods for solving a root-finding problem \(F(x) = 0 \).

CALCULUS. Suppose that \(F(x) \) is twice continuously differentiable in some interval about a point \(x^* \) such that \(F(x^*) = 0 \), \(F'(x^*) \neq 0 \) and \(F(x) \) is nearly linear near \(x^* \) (i.e., \(|F''(x)| < \epsilon \) near \(x^* \)).

Let \(x_0 \) be a point near \(x^* \). Consider the first degree Taylor polynomial for \(F(x) \), expanded about \(x_0 \),

\[
F(x) = F(x_0) + (x - x_0)F'(x) + \frac{(x - x_0)^2}{2} F''(x_0),
\]

where \(\xi(x) \) lies between \(x \) and \(x_0 \). Since \(F(x^*) = 0 \) and \(F(x) \) is nearly linear about \(x^* \), we have

\[
0 \approx F(x_0) + (x^* - x_0)F'(x^*)
\]

or

\[
x^* \approx x_0 - \frac{F(x_0)}{F'(x_0)}.
\]

Therefore

\[
x_1 = x_0 - \frac{F(x_0)}{F'(x_0)}
\]

should be a better approximation of \(x^* \) than \(x_0 \).

Algorithm.

1. **STEP1** Define \(0^* > 0 \) as your zero, \(N \) as the maximum number of iterations, choose \(x_0 \) near \(x^* \) and set \(n := 0 \);
2. **STEP2** if \(|F(x_n)| := O^* \) or \(n > N \), then \(x^* := x_n \) and STOP;
3. **STEP3** define \(x_{n+1} := x_n - \frac{F(x_n)}{F'(x_n)} \), then set \(n := n + 1 \) and GOTO STEP2.

Advantage. Very fast convergence ultimately.

Disadvantage. It often requires a good initial guess for \(x_0 \). It requires two function evaluations \((F(x_n) \text{ and } F'(x_n)) \) at each iteration.

Note. If \(F(x) = \sqrt{|x|} \), then \(F(0) = 0 \), so \(x^* = 0 \). Let \(x_0 \neq 0 \), then \(x_1 = -x_0 \) and \(x_2 = x_0 \); this way you obtain \(x_{2n} = x_0 \) and \(x_{2n+1} = -x_0 \). Therefore Newton’s method never works for this particular function.

Secant Method. The secant method is a variation of Newton’s method. We need to make the same assumptions for \(F(x) \) as we did for the Newton’s method.

CALCULUS. Let \(x_0 \) and \(x_1 \) be two points near \(x^* \). If \(|x_1 - x_0| < \epsilon \), then

\[
F'(x_1) = \lim_{x_1 \to x_0} \frac{F(x_1) - F(x_0)}{x_1 - x_0}
\]

Consider the Taylor polynomial for \(F(x) \), expanded about \(x_1 \),

\[
F(x) = F(x_1) + (x - x_1)F'(x) + \frac{(x - x_1)^2}{2} F''(x_0),
\]

where \(\xi(x) \) lies between \(x \) and \(x_1 \). By replacing \(F'(x_1) \) with \(\frac{F(x_1) - F(x_0)}{x_1 - x_0} \) in the above formula and using the fact that \(F(x^*) = 0 \) and \(F(x) \) is nearly linear about \(x^* \), we obtain

\[
0 \approx F(x_1) + (x^* - x_1) \frac{F(x_1) - F(x_0)}{x_1 - x_0}
\]

or

\[
x^* \approx x_1 - \frac{x_1 - x_0}{F(x_1) - F(x_0)} F(x_1).
\]
Therefore by choosing
\[x_2 = x_1 - \frac{x_1 - x_0}{F(x_1) - F(x_0)} F(x_1) \]
we should get a better approximation of \(x^* \) than \(x_1 \).

Algorithm

\begin{enumerate}
 \item Define \(0^* > 0 \) as your zero, \(N \) as the maximum number of iterations, choose \(x_0 \) and \(x_1 \) near \(x^* \) and set \(n := 1 \);
 \item if \(F(x_n) := 0^* \) or \(n > N \), then \(x^* := x_n \) and STOP;
 \item define \(x_{n+1} := x_n - \frac{x_n - x_{n-1}}{F(x_n) - F(x_{n-1})} F(x_n) \), then set \(n := n + 1 \) and GOTO STEP2.
\end{enumerate}

Advantage. Fast convergence; only one function evaluation.

Disadvantage. It requires some arithmetic per iteration; care must be taken to prevent divergence.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
Newton: & very fast \tabularnewline
Secant: & fast \tabularnewline
Bisection: & very slow \tabularnewline
\hline
\end{tabular}
\end{table}

Error Analysis. The absolute error at the \(n \)-th iteration is \(|x_n - x^*| \) and is denoted by \(E_n \).

Suppose \(\{x_n\}_{n=0}^\infty \) is a sequence that converges to \(x^* \). If there exist \(\lambda > 0 \) and \(\alpha > 0 \) such that
\[\lim_{n \to \infty} \frac{E_{n+1}}{E_n^\alpha} = \lambda, \]
then \(\{x_n\}_{n=0}^\infty \) is said to converge to \(x^* \) of order \(\alpha \), with asymptotic error constant \(\lambda \).

1. If \(\alpha = 1 \), the method is called linear.
2. If \(\alpha = 2 \), the method is called quadratic.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
Newton: & quadratic convergence \(\alpha = 2 \) \tabularnewline
Secant: & \(E_{n+1} \approx \lambda E_n E_{n-1} \ \alpha = (1 + \sqrt{5})/2 \) \tabularnewline
Bisection: & \(\max \{|a_n - x^*, |b_0 - x^*|\} < |a_0 - b_0| 2^{-n} \) \tabularnewline
\hline
\end{tabular}
\end{table}

Efficiency. The efficiency of a method is the cost per iteration.

\begin{table}[h]
\centering
\begin{tabular}{|l|}
\hline
Bisection: & 1 function evaluation, 1 multiplication and a little logic per iteration. \tabularnewline
Secant: & 1 function evaluation and some arithmetic per iteration. \tabularnewline
Newton: & 2 function evaluations (F and F’) and some arithmetic per iteration. \tabularnewline
\hline
\end{tabular}
\end{table}

\textit{California State University, East Bay}
Reliability:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bisection</td>
<td>Convergence is assured once appropriate a_0 and b_0 are found.</td>
</tr>
<tr>
<td>Newton</td>
<td>Needs a good initial guess for x_0.</td>
</tr>
<tr>
<td>Secant</td>
<td>Needs good choice of x_0 and x_1.</td>
</tr>
</tbody>
</table>

Summary. For general use, the bisection method is far too slow. The other two methods are fast enough in general, but care must be taken to prevent divergence. The fact that the secant method does not require evaluation of $F'(x)$ can be a crucial advantage. Secant method is regarded as best general purpose method.

Ideal Method. Combine global reliability with fast local convergence while achieving optimal efficiency at each iteration.

If, say one is constructing a computer code which should be fast, reliable and efficient, then there is no need to restrict oneself to the “pure” form of the above (or any other) methods.

Example. Find (to 9 decimal places) the square root of 2.

Let

$$F(x) = x^2 - 2 = ((1)x + 0)x - 2.$$

<table>
<thead>
<tr>
<th>n</th>
<th>a_n</th>
<th>b_n</th>
<th>x_n</th>
<th>x_{n+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
<td>1.5</td>
<td>1.50</td>
<td>1.44444444</td>
</tr>
<tr>
<td>2</td>
<td>1.25</td>
<td>1.5</td>
<td>1.416666667</td>
<td>1.409090909</td>
</tr>
<tr>
<td>3</td>
<td>1.375</td>
<td>1.5</td>
<td>1.414215686</td>
<td>1.414159292</td>
</tr>
<tr>
<td>4</td>
<td>1.375</td>
<td>1.4375</td>
<td>1.414213562</td>
<td>1.414213661</td>
</tr>
<tr>
<td>5</td>
<td>1.40625</td>
<td>1.4375</td>
<td>1.414213562</td>
<td>1.414213562</td>
</tr>
</tbody>
</table>

Other Iterative Root-Finding Methods. All root-finding methods are basically based on two geometric ideas:

(i) Using slope (Newton and secant methods).

(ii) Bracketing the initial interval and reducing the size of the brackets at each iteration (bisection method).

It is important to note that every iterative method must be provided with at least an initial guess x_0, and will have difficulty of finding x^* accurately. In general Slope methods are faster than Bracketing methods, but the latter guarantee the convergence.

Slope Method.

Modified Newton’s Method. A Proposed generalization of the Newton’s method is

$$x_{n+1} = x_n - \omega \frac{F(x_n)}{F'(x_n)},$$

where the constant ω is an acceleration factor chosen to increase the rate of convergence. It is known that if x^* is a double root of $F(x)$, then x_n can go faster to x^* if we choose $\omega = 2$. When the multiplicity of x^* is m, then we should choose $\omega = m$.

California State University, East Bay
Steffensen’s Method.

\[x_{n+1} = x_n - \frac{F(x_n)}{S(x_n)}, \quad \text{where} \quad S(x) = \frac{F(x + F(x)) - F(x)}{F(x)}. \]

This method is as fast as Newton’s method and does not require the evaluation of \(F’(x) \).

Olver’s Method.

\[x_{n+1} = x_n - \frac{F(x_n)}{F’(x_n)} - \frac{1}{2} \left(\frac{[F(x_n)]^2 F''(x_n)}{[F'(x_n)]^3} \right). \]

This method is cubically convergent, therefore it is faster than Newton’s method which is only quadratically convergent.

Halley’s Method.

\[x_{n+1} = x_n - \frac{1}{a_n}, \quad \text{where} \quad a_n = \frac{F’(x_n)}{F(x)} - \frac{1}{2} \left(\frac{F''(x_n)}{F'(x_n)} \right). \]

This method is slower than the previous method but involves less arithmetic, and is considered very good for finding real root of polynomials along with the Horner’s method.

Modified Newton’s Method. To avoid computing the derivative at each step, it has been proposed to replace \(F’(x_n) \) with \(F’(x_0) \) in all steps. The convergence of Newton’s method is quadratic, but then the convergence of the proposed method is only linear. To obtain more rapid convergence of Newton’s method, it has also been proposed that the derivative be computed every other step. This method is given by

\[
\begin{align*}
 x_{2n+1} &= x_{2n} - \frac{F(x_{2n})}{F'(x_{2n})} \\
 x_{2n+2} &= x_{2n+1} - \frac{F'(x_{2n+1})}{F(x_{2n+1})}.
\end{align*}
\]

Modified Secant Method. It has been proposed that the slope of the secant line be replaced by

\[\frac{F(x_n) - F(x_0)}{x_n - x_0}. \]

Under certain conditions, \(x_n \) converges to \(x^* \).

Müller’s Method. This is a useful method for finding real and complex roots of a Polynomial. Müller’s method is a generalization of the approach that led to the secant method.

Given three points \(x_0, x_1 \) and \(x_2 \), a quadratic polynomial is constructed which passes through these three points \(\{(x_i, F(x_i)) \mid i = 0, 1, 2\} \). One of the roots of this polynomial is used as an improved estimate for \(x^* \). The method uses the following formula:

\[x_{n+1} = x_n - \frac{F(x_n)}{[(F'(x_n))^2 - F(x_n)F''(x_n)]^{1/2}}. \]

The method converges cubically for a simple root but the convergence becomes linear at a multiple root.

With the secant method, real choices of \(x_0 \) and \(x_1 \) will lead to a real value of \(x_2 \). But with Müller’s method, real choices of \(x_0, x_1 \) and \(x_2 \) may lead to complex roots of \(F(x) \). This is an important aspect of Müller’s method. For this reason it is widely used for finding the roots of polynomials.

Bairstow’s Method. The objective is to find quadratic polynomials

\[Q(x) = x^2 - rx - s \]

California State University, East Bay
which are factors of the polynomial \(P(x) \). Bairstow observed that the Synthetic division can be performed with \(Q(x) \) to obtain the real and complex roots of the polynomial \(P(x) \).

\[\bigcirc \text{ Bracketing Method.} \] What all bracketing methods have in common is that they can be used only if \(F(x) \) has opposite signs on either side of \(x^* \). What distinguishes one method from another is the strategy used to get solution \(x^* \). A solution \(p \) found by a bracketing method is called a test point.

\[\blacktriangle \text{ Regula Falsi (or False Position) Method.} \] The test point \(p \) is obtained by finding the point of intersection of the x-axis and the secant line passing through the points \((x_{n-1}, F(x_{n-1}))\) and \((x_n, F(x_n))\). Thus

\[
 p = \lim_{n \to \infty} \frac{x_n F(x_{n-1}) - x_{n-1} F(x_n)}{F(x_{n-1}) - F(x_n)}.
\]

Remark. Let \(F(x) = x^2 - 3x + 2 \). Then choose the interval \([0,3]\) as the initial interval. Note that \(p \) does not exist. (Why?)

\[\blacktriangle \text{ Brent’s Method.} \] This method is a modified version of the Regula Falsi method which involves \(
\frac{1}{2}(x_n - x_{n-1})\), secant method and bracketing techniques.

Brent has taken great care to avoid underflow and overflow difficulties with this method; but the method is somewhat complicated to explain here.

\[\blacktriangle \text{ Fixed-Point Iterations.} \] Finding the real zero of a function \(F(x) \) is the same as finding the intersection of \(F(x) \) and the x-axis. Consider the function \(G(x) = F(x) + x \), the point of intersection of \(G(x) \) and \(y = x \) (i.e., \(G(x) = x \)) is exactly the same as the real zero of \(F(x) \). Any solution \(x^* \) to the equation \(G(x) = x \) is called a fixed point of the function \(G(x) \).

CALCULUS. Let \(G(x) \) be a continuous function on \([a, b]\) where \(G'(x) \leq k < 1 \) for all \(x \in (a, b) \). If \(x_{n+1} = G(x_n) \), then

\[
|x_{n+1} - x_n| = |G(x_n - G(x_{n-1}) \approx |G'(x)||x_n - x_{n-1}| \leq k|x_n - x_{n-1}| \cdots < k^n.|x_1 - x_0| < |x_1 - x_0|.
\]

Thus \(\lim_{n \to \infty} |x_{n+1} - x_n| = 0. \)

Thus \(G(x) \) has a unique fixed point \(x^* \) on \((a,b)\).

Algorithm A

1. **STEP1** Define \(0^* > 0 \) as your zero, \(N \) as the maximum number of iterations, set \(n := 0 \) and choose \(x_n \) near \(x^* \);
2. **STEP2** find \(x_{n+1} = G(x_n) \);
3. **STEP3** if \(|x_{n+1} - x_n| := O^* \) or \(n > N \), then \(x^* := x_n \) and STOP;
4. **STEP4** set \(n := n + 1 \) and GOTO STEP2.

Advantage. It requires one function evaluation. When \(G'(x) \leq k < 1 \) on \((a,b)\), the convergence to the unique solution is guaranteed. The convergence is quadratic, when \(G''(x) \) is continuous on \((a,b)\).

Disadvantage. When it is used to find the root of the function \(F(x) \), it is not always clear how to construct \(G(x) \) for a fast convergence. If the range of \(G'(x) \) on \((a,b)\) is not known, then the convergence is not guaranteed.

Example. The equation \(x^3 + 4x^2 - 10 = 0 \) has a unique root in \([1,2]\). There are many ways to change the equation to the form \(G(x) = x \) by simple algebraic manipulation. For example

\[
\begin{align*}
(a) \quad G_1(x) &= x - x^3 - 4x^2 + 10 = x, \\
(b) \quad G_2(x) &= \left(\frac{10}{x} - 4x\right)^{1/2}, \\
(c) \quad G_3(x) &= \frac{1}{2}(10 - x^3)^{1/2} = x, \\
(d) \quad G_4(x) &= \left(\frac{10}{4 + x}\right)^{1/2}, \\
(e) \quad G_5(x) &= x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x} = x.
\end{align*}
\]

California State University, East Bay
Note that $G_5(x)$ is obtained from the Newton’s formula by replacing x_n with x and x_{n+1} with $G_5(x)$ with $x_0 = 1.5$, the following table lists the results of the fixed-point iteration method for all five choices of $G(x)$.

<table>
<thead>
<tr>
<th>n/x_n</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>1</td>
<td>-0.875</td>
<td>0.8165</td>
<td>1.286953768</td>
<td>1.348399725</td>
<td>1.373333333</td>
</tr>
<tr>
<td>2</td>
<td>6.732</td>
<td>2.9969</td>
<td>1.402540804</td>
<td>1.367376372</td>
<td>1.365262015</td>
</tr>
<tr>
<td>3</td>
<td>-469.7</td>
<td>(-8.65)^{1/2}</td>
<td>1.345458374</td>
<td>1.364957015</td>
<td>1.365230014</td>
</tr>
<tr>
<td>4</td>
<td>diverges</td>
<td>diverges</td>
<td>1.375170253</td>
<td>1.365264748</td>
<td>1.365230013</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>1.360094193</td>
<td>1.365225594</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>1.365223680</td>
<td>1.365230013</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>1.365230013</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trivia Questions:
1. Name a method which is often used in the “built-in” root-finding routine of a programmable calculator.
2. Can you use Newton’s method to find complex roots?
3. Bairstow’s method is not recommended for hand calculation unless ...?
4. What is a test point and why some point are called test points?

Answers To The Trivia Questions.
1. Dohtem noitcesib.
2.)emosrebmc yrev(margorp nartoF a ni)stnetetas tuptuo/tupni eht gnifyidom ylbaius dna(xelpmoc ot selbairav laer eht gnignahc yb.
3. Nwonk era sesseng laitini doog.
4. Tniop tset a dellac si tniop gnithsuer eht os yltxce noituolos eht tih ot tcepxe lareneg ni t’nal eno ,dohtem gniteckarb a ni.